skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Small, R J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper we summarize improvements in climate model simulation of eastern boundary upwelling systems (EBUS) when changing the forcing dataset from the Coordinated Ocean-Ice Reference Experiments (CORE; ∼2° winds) to the higher-resolution Japanese 55-year Atmospheric Reanalysis for driving ocean–sea ice models (JRA55-do, ∼0.5°) and also due to refining ocean grid spacing from 1° to 0.1°. The focus is on sea surface temperature (SST), a key variable for climate studies, and which is typically too warm in climate model representation of EBUS. The change in forcing leads to a better-defined atmospheric low-level coastal jet, leading to more equatorward ocean flow and coastal upwelling, both in turn acting to reduce SST over the upwelling regions off the west coast of North America, Peru, and Chile. The refinement of ocean resolution then leads to narrower and stronger alongshore ocean flow and coastal upwelling, and the emergence of strong across-shore temperature gradients not seen with the coarse ocean model. Off northwest Africa the SST bias mainly improves with ocean resolution but not with forcing, while in the Benguela, JRA55-do with high-resolution ocean leads to lower SST but a substantial bias relative to observations remains. Reasons for the Benguela bias are discussed in the context of companion regional ocean model simulations. Finally, we address to what extent improvements in mean state lead to changes to the monthly to interannual variability. It is found that large-scale SST variability in EBUS on monthly and longer time scales is largely governed by teleconnections from climate modes and less sensitive to model resolution and forcing than the mean state. 
    more » « less
  2. Abstract High-resolution observations have demonstrated the presence of strong time-mean near-surface wind convergence (NSWC) anchored across oceanic frontal zones, such as the western boundary currents. Initial analyses appeared to show a close association between this time-mean NSWC and time-mean properties of the underlying sea surface temperature (SST), such as the gradients and second derivatives (e.g., Laplacian of SST), acting through pressure-adjustment and vertical-mixing mechanisms. However, a series of recent papers have revealed the instantaneous NSWC to be dominated by atmospheric fronts and have suggested the importance of air–sea processes occurring instead on shorter, synoptic time scales. In this paper, using the ERA5 reanalysis dataset in the Gulf Stream region, we aim to reconcile these viewpoints by investigating the spatial and temporal dependence of NSWC and its relationship to SST. It is revealed that while atmospheric frontal processes govern the day-to-day variability of NSWC, the relatively weak but persistent pressure-adjustment and vertical-mixing mechanisms provide lower-frequency modulations in conditions both with and without atmospheric fronts. In addition to their temporal characteristics, each mechanism is shown through spectral analysis to dominate on specific spatial scales. In light of recent work that has tied remote atmospheric responses to NSWC anomalies in western boundary current regions, these results emphasize the importance of oceanic frontal zones for atmospheric variability on all spatiotemporal scales. 
    more » « less